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ABSTRACT

The analytical treatment of the problem of solidification in a slab
of thickness 2a is based on Lightfoot's solution for the case of a semi-
infinite mass, initially at constant temperature ind bounded by the plane
surface x - 0 kept at constant temperature. The rate of advance of the
solid walls moving from the two boundary planes x = 0 and x = 2a, kept
at constant temperature, is given in closed form. Solidification in a
sphere, in an infinite or finite cylinder, or in a parallelepiped, is
obtained from the solution for the slab by correlation of temperatures due
to the initial supply of heat. Numerical solutions can be calculated
rapidly.

1



Pi. f~TRODUCTION:

An analytical solution of the problem of freezinj in a finite region
has been attempted by Lightfoot* who studied the rate of solidification of
a medium, ori.inall. at constant temperature, and bounded by the plane
surfaces x = 0 and x = 2a kept at constant teirperature. The problem
was tr-oated by the method of images but essantial factors were neglected
and the solution obtained by Li;,htfoot is neither complete nor exact.

An exact solution has been obtained by the sae author for the case
of a semi-infinite mass of molten material, originall- at constant tempera-
tnre, and with its bounding plane surface x = 0 maintained at constant
(zero) temperature. In the r'iven solution, the diffusivity k, the specific
beat c, and the density Pof the medium, are assumed constant for all tempera-
tures, and the same for the liquid as for the solid medium.

The so'ution of the problem of solidification in finite regions,
,iven below, has oeen derived from Lightfoot's solution for a semi-infinite

medium. The following method will give the rosition of the surface of
separation of solid and liquid phases as a function of time. Results of
this study ma , be of help in the investigation of a complete so ution of the
problem of solidification.

2. Solidification in a Semi-infinite Medium*

The solution of the problem of solidification of a mass of molten
n-iterial requires, in addition to known solutions, consideration of the effect
on the temperature caused by the evolution of latent heat of fusion. In
Lightfoot's analysis of the problem, the surface of separation of solid and
liquid phases has been regarded as a movin.- source of heat. The speed of
of the plane source was determined from the condition that the temperature
at the moving plane surface, at any position, is equal to the meltinj point
of the material.

The position x of the moving plane, at time t, in a medium initially
at temperature 0, and with its boundinr< plane x = 0 kept at zero
temperature, is given by

x = 2A. (1)1

where k is the thermal diffusivity of the medium, and the constant 4. is
obtained from

V. London + S . () 0 (2)

*Proc. London Math. Soc. (2), 31, (1930), 97
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The terms used in (2) are as follows:

V. the melting point of the medium

0,, the initial temperature

L, the latent heat of fusion

C, the specific heat

and

With this solution, the temner),ture I at a pointx,, at time t,
for x, < -ET will be:

and for Ia> 24

(5)

According to (4) and (5), we notice that, while solidification
nroceeds from the plane x = 0, the temperatures due to the original
sunply of heat, and to the latent heat of fusion, can be evaluated separately.

For x=244M , at the surface of separition of solid and liquid
ohases, (4) and (5) coincide with (2).

The terms in (2) are constant for any position of the moving plane
surface source, and can be written as:

v -
(6)

VLI

V V + VL()
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3. Solidification in a Slab of Thickness 2a

An exact solution of the problem of solidit'ic-.....- s; of molten
-vterial, initially at constant temnrerature, cam :Y. derived from the results
;iven in the preceding section.

For a freezing medium in the region 2a, initially at temperature 0
with the bounding plane surfaces x = 0 and x = 2a kept at zero,
we evaluate the sum of the temperatures due to the original supply of heAt
and to latent heat of fusion released on solidification by the two solid
sections of the medium (0, x) .ad (2a, 2a - x) as in Fig.I.

Fig. 1

'Thbe surfaces of seoaration of solid and liquid phases are taken as
two moving nlane sources of heat, and the speed of these two sources is
determin,'d from the condition that the temnerature at the movin plane
sources is equal to the meltinp: point of the medium.

F'or t.e te'mcra't.re at tie m.vinp sources we write th-e condition

v: v# )1 (v &(9)

where VO refers to the original supply of heat, and (VL )i , (VL )a
are temperatures due to he-it of fusion fro. solid section (_,x) and
(2a, 2a- x) r~spect::i;ly.
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It is evident that solidification will procee( from both x = 0 and
x 2a , and for t snal], t.he positions of the moving planes will be

z:2 Z.* , a -x = a4 -2 41v
(10)

The constant , of (10) is the same as for a semi-infinite medium and
is given b, (2). In terms of the dimensionless variable

forms (10) will become

£a.• (z2)

In the region ?, the temperature V# , at any point x , at a
,iven f" , is the mcwu solution

Vsin M(13)

Durin7 an initial period of time, (V win be obtained
from (4) and (5) as follows:

For x L<(A&M/..-(VL ),1\)

and (VL ) (&Z(4) n- e(5

(VL is same as (15)

For the moving plne source 0 = the terms in (9) will
be evaluated from:
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v# n e (17)

Temperature Vj , (VL ),, and (VL) D at the mving plane source
= 24.-V-F will be obtained with 6!7), (19), and (18), respectively.

The sum of (17), (18), and (19), is equal to the melting point of the
medium. for a range of values o: T T O  . The upper limit T, varies
for each numerical case and depends upon the initial temperature % and
the ratio 4 . For " 6M,722 , the temperature at the center of
the slab is iven by

iio+)r (~Zn+1)Lrt/7
NIT 2n+I 2 e

nu0 + (20)

and we can verifr that, -when

In each numerical c-is 3, therefore, the upper limit 7 can be obtained
;ith (20). We see also that, during the entire period of time ,
the boundaz7, conditions of the problem will be satisfied.

In the case of a oemi-infinite medium and x > , , or
> Z -k* , the temperature given by (5) is the sum of the

two terms

vO= 00( ) (21)

V LL - (22)

C Z ai
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Sol-uio, (21) is correct for large v.dlues of E but, for small values,
VO must be equal to 0 at a finite distance frar. the boundary

x 0 0. Where V , a , we will obtain (VL) 30. In general, the
boundary condition is satisfied when the temperature at the center of a
slab of thickness 4a , initially at 0 and with bounding surfaces kept
at zero is

OOMn-O Z (23)

This condition can be verified for any , including the limiting case
where

and we can write

(vL o

During the period of time Ero, the two plane sources move from the
boundaries toward the center of the slab as in semi-infi-nite medium.
The temperature distributions VO , (VL), and (VL o and their sum,
computed for a numerical example, with Ta C, are shol'm on Fig. 2.

In the region 2a, initially and till solidification is coplete,
the correct mathematical forms of (VL), and (VL )g , at the plane
source moving from x = 0 to x = 'J are:

n I n "un e .(24)
N n- Z 

Z sin i

During the interval O~r '(VL),. is a constant obtainsd from (ia)
while (V L )& , evaluated from (19) , is initially zero but may
assume increasing values as Er approaches Er. • However, during the(VL) L Mu X.{#(L, snMT ZVX'4T(26)
Duintie interval 0 L ia

whie V Levlutedfrm 19), s nitaly em utma



The rate of solidification in the rangeOX 1)miiht be obtained
directly fran (24) and (25) if the series of integrals in the above
forms could be evaluated exactly. So far, available ?raphical or
numerical techniques are unsatisfactory.

Lightfoot shows that a rate of solidification can be obtained by
trial method, and assumes a position of the mving planes given by

a xX I Xo

where b, K, and 'E ' are chosen for continuity and satisfy the
conditions

- - .L I+-- ~~'I+r1

The constant K remains undetermined and its value must be adjusted for
correct temperature at prescribed time. According to the author, this
method requires "great labour".

For solidification in the range .xa we assume a position
of the moving plane given by

4~ ~ -- T,~- k To (27)

where b,A , and Tt, are to be determined from the condition that
the temperature at the moving plane is equal to the melting point of the
medium. For continuity of the two functions of , (11) and (27)
and their first derivatives at x = iwe make

(28)
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We determine b and 4 from the following:

a 
(29)

The second equation of (.2f refers to complete solidification at
a definite o , to be obtained according to the following considerations.

While the source of heat moves from x = 0 to x = x.
temperature (VL), is obtained from (18), and is a constant at any
point in this range. At the same plane source, (VL )Z will vary from
zero to a known value. 2o]idification is corplete when the source
Novin from x = 0, and the source novin (rom x = 2a merge
at x = a . At this position we will obtain ( L VL ),t
regardless of their value at any other point.

As the plane source moves from x x to x = a temperature
(VL) may be:

(a) continuously increasin7
(b) continuously d easinga
Cc) constant Sl 4 .{i-

The rate of solidification for (c) cai be easily obtained, as the
temperature, due to the original supply of heat at x = a and

" T will be given by

-V ~ ~ .CP (Zn+0OY eZn4 ~

Mao (30)

The value T of (30) may be found graphically and checked
numerically.

The functions of T , corresponding to (a), (b) and (c), will
be obtained by substitutin- in the second equations of t29) a value

9
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(a) 1reater than in (30)
(b) smaller than in (30)
(c) as in (30)

and may be rerresented as in Fig. 3.

C)
b)

I I

I I

Fig. 3
The speed of the moving planes for (a), (b), and (c), Aill be

-iven by - x j
- T. ir -r ~ (31)

and for each case will depend on 4 and d

In any numerical example, the lowest rate of solidification will
be obtained for case (a) and the highest rate for case (b).

The rate of solidification is given also by the rate of coiduction
of heat at the source * ,or

ICso, " xmot (32)

• Lightfoot, loc. cit.
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Graphically, the rate of coniuction for case (a) may be represented as

in Fig 4. A large increase of (VL )I implies an increase in the rate

of conduction at the source, or rale of solidification. The rate computed

with (31) will follow an opposite trend. The difference between

• ranhical and computed rates tencsto zero when (VL 1 "0(VL)IV

I.

IxI
(VL\

Fi .

Cas: (b), re)-" irted in Fi.c,5. shows th-at, if (V )9  decreases,

the ;raphical rate will be lower than the computed rate. Their difference

tends to zero when (VL) ( V  )  L

I *Dotted lines on iZ 4, , and 6 are temperaturc distributions (VL),

Solid lines are drawn tangent to distributions a. the sources.

11
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In cas (c), fi -uru 6, ra-phjic- n " CO'IJ -uL raite- coin cide.
~s~~'~l 'nsX 'mnd 2-t - x ariro---v-h x z a th,1 rate of'

Solidi f'lc- t-ori decreas, $ and . eds to a constant. consi.rnt tem-trq-ture
-0L , rc tlcition r.f Vie rl, ". scrc -ovin firorn Y. =0(or

4L J6i -n 3rrc-) rcvln Cro, x Ia i~ Coxrct
'on.

NOL)

--------



Ve maY ' -Ate thVt in a freezi-n me d ,,.. 'nit':,Uly %- temerature
, and with its bounjin; surface- x = 0 , and x = 2a , kept at zero, the

position,3 of the surfac,i,; of sevtration of so.La and lLqu-vi priases are
,iven b-y the two functi:is of

(33)

The arstants and the ranges of T of (33) wil vry for e.,ch
numerical case and are to be determined from the data of the problem
accordin to the conritions :ivn "_n this siction.

in tha for,:.2 of (33), th thermal diffusivity k, include~d in the

~~~A the e4U1 tth diffuivit, in.hdimrensionless v-, riable T a , is not undetermined. .e aLisune
k constant aridl e2qu;tl to the avera-- e diffbu[ ivitvr of t ,e 1-edilzn1 in the
temnerature r-r ,:! V to 0 , i.a. in the molten material. Thi[s consta nt

to be de 'F d ,rient and methods of measureent be
,ased on solutions _iven in the followin, sections.

The cor mlete exact solution of the problem, for the special case
= V (i.e. initial temperature is at melting po. nt of the medium)

is given by Lightfoot. In this case solidification proceeds from each
boundary ! 0 and 2- =. , indenendently, and tie position of
the r:.ovin7 plane x (or 2a ), until solidification is complete, is
given by

(34)
,.hlre .4 is obtained from (2) as for a serri-infinite -edim.

In an" nu:nerica] example 0 V , we can write

(35)

and we verify that for T as in (35) we will obtain

13
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4V~

=- 

Some nmi rical solutions for media having, the same melting point are

shown in Figure 7. The initial temperatures o and ratios J.a are ad-

justed for equal value of constan. .4 A *1

1. * The Sphere and the Infinite Cylinder

In the solution of the problem of solidification in the finite region

2a , the planes of separation of solid and liquid phases have been regarded

as moving plane sources of heat. Their speed was obtained from the

condition that the temperature at the sources is equal to the melting point

of the medium. The temperature due to the original supply of heat is

evaluated from a known solution while the tem.perature due to latent heat

of fusion is determined from analysis. Solification in a sphere, or in

a cylinder, gives rise to spherical, or cylindrical surface sources of

heat, and the forms of VL , for these cases, are similar to (24) or (25).
As for moving Plane surfaces, correct evaluation of the series of

integrals can not be obtained by available methods. The temperature

(V L ), at the surfaces of separation of solid and liquid phases will be
determined from analysis.

The known solutions V$ in the slab of thickness 2a, in the infinite

cylinder dt > ro , and in the sphere A )p 0-4 ,-Initially at

and with es kpt at zero, expresse" in terms of the dimension-

less variable Or , are as follows:

14



2q4
MO

(37)

(V4 moo 3.D.L e-4,

(39)

where the subscripts 1, 2, and 3, refer to the slab, the cylinder and

the sphere, in that order.

The temperature distributions obtained with (37), (38), and 39),

for the same medium, with dimension a and initial temperature

the same for the three regions will never result as in Figure 8, regard-

less of T , , , and Identical distributions in any

Liven range K -X a-rZ -X.4CF" and O< X:.5 , may be obtained

for particular values of o, T t and T , as in Figure 9.

I
I I

I I
I

I I

xao XsU XRO

Fig.$ Fig9



In the problem of solidification we assume that, in all three
regions, the surfaces of separation of solid and liquid phases are at
equal distance from the boundary (we may have T V ) and for
these surfaces we write

v,1vL'V

(40)

At these surfacus we obtain also

(vOI (vOz • MO0d

(41)

where ( VL)o , in this instance, is lie temperature caused by all tL,
heat of fusion flowing in the slab 2a.

We will prove briefly that (41) is a necessary condition in the
solution of these problems.

We comsider the slab and the infinite c7ylinder, soli., at unit
distance from the boundary, or at

K -a-rI"1

(42)
and at the surfaces of separation, we make

O > (O.(43)

The inequality of (43) mans that, in the solid part of the slab,
the temperature distribution V1 ), would be higher, at all points, than
the temperature distributions ( VO ) in the solid part of the cylinder.
During solidification of unit volumes of medium adjacent to the external

16



surfaces, the total flow of original heat, per unit area, would be
greater at the cylindrical surface!4~~ ' than at thes
corresponding plane surface X a At-* During solidification, in any
region, original heat and latent heat of fusion flow to the boundary
concurrently and are subject to the sane boundar'y condtions. With a
greater total flow of original heat we would obtain also a greater total
flow of latent heat of fusion; the tempereture distibution (Vi. . in the
solid part of the slab would be higher,. at all points, than the temperature
distribution ( Vg, in the cylinder.

Assum9ption (43) leads to the conclusion that, either in the slab or
the cylinder, the temperature at the surface of sepaz-itio-O of solid and
liuid phases wniild result

V# +VL V

(44)

The same conclusion wrill )e reached reversing the inequality in (44)
and for subsequent elements of volume,, until solidification is comiplete.
The same result will be reached co. paring soLidification in a slab and in
'~sphere.

1'his conclusion opens the wa7r to the so'ution of the problemis of
~lidiicati n reiiusly discussed and anpaars to havre been overlooked

in rist work on the subject.

Since the solution of the nroblems off solidification for the slab,
the infinite cylinder, and the srp1er!, must satisfy condition (41), the
solutions for the cylinder and the sphere can be derived f rom the solution
obtained for the slab.

F~or solidification in the slab, at a -,iven distance X/A P we
evaluate T from the two fonns of (33) and solve (3) for hese values of

T and XIA. In (38) and (39) we substitute ej." and V9
as obtained from (37). The values 7,1 and T# given 5y the (38) and (39)
can be tnbtained -raphically and chocked numerically.

F~r ) sow h~,initially, the rates of solidification in all
three r 1on s oicie. fe nta eidth ae fsldfcto

ofre arcin onefer aniasperi uerosnth ats inf splierecaore

rapidly than in a cylinder.

17



5. The Slab, the Infinite Cylinder, and the Sphere, Initial temperature
constant and radiation at the surface into a medium at constant
temne rature

As in the previous cases, the solutions of these problems are derived
from the solution obtained for solidification in a slab, with initial
temperature constant and bounding surfaces kept at zero.

In a medium, initially at # and with radiation at x =-a and
x = +a into a medium at zero, the temperature distribution- is
given by

,, [., + A + A"1 ,n 4)
where A - ah, h being the heat transfer coefficient of the surface,
and 7. /6 the positive roots of

/Sam /& Sej (46)

The temperature distribution obtained with (46) for any value of n and
t and the temperature distribution obtained from (37) for the slab,

for an,' value of F , will never cross each other, as in Fi-rure 8. The
difference between temperature gradients at corresponding points, through
the entire re-ion, will always be t 0, or always fL0 . We conclude that,
when in the region - a < x 4 a , at constant initial temperature and
radiating at x&-A and at x. +a into a medium at constant temperature,
we find the surfaces of separation of solid and liquid phases at the
same distance from the boundary as in the slab of (37), condition (41)
will be satisfied. The solution of the problem for this case is obtained
by the method outlined in sectio' 4.

Condition (41) applies also to an infinite cylinder and to a sphere,
initially at constmnt temperature and cooled by radiation into a medium
at constant temperature. The two problems can be solved by the same
method and forms of V for these cases can be found in textbooks.

* Carslaw and Jaeger, Conduction of Heat In Solids, p. 100
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&. The Finite Cylinder and the Parallelepiped

In the cylinder of Figure 11 initialy at constant temperature # and
with boundary surfaces kept at 4ero, the surface of senaration of solid
and liquid Thases will be at a point

-4 (7)

iri

I !

Fig 1

when (V ~ is equal to the tempersureV obtained in the slab of
(37) at the surface of separation T7m - . In general,
solidification in a finite cylinder occurs with the hi -her of the two
temperatures Vj obtained for the slab at the two positions #ven by the
coordinates of the point as in (47).

The known solution YO in a finite cylinder, initially at
1,nd with boundary surfaces k t at zero, expressed in terms of the

Aimenionless variable , is as follows.

19



CPO BALA --- +),T

(48)
Solution VO for a finite c-linder, initially at 0 and cooled by

radiation into a medium at constant tEriperature is given in textbooks.

Solidification in parallelepiped is solved by the same method.

Fiure2s'iows surfaces of separation in a finite cylinder. The
nuT. rical data are the same as for (b) oi Figure 7.

Inclocures :

F!ryre 2
F, igure 7
?i ure 10
F. Figure 32
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